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Abstract

Starting axiomatically with a system of finite degrees of freedom whose logic Z. is an
atomic Boolean c-algebra, we prove the existence of phase space £, as a separable
metric space, and a natural (weak) topology on the set of states & (all the probability
measures on £,) such that £., the subspace of pure states &, the set of atoms of £,
and the space 2#(£2.) of all the atomic measures on £2,, are all homeomorphic. The only
physically accessible states are the points of £2.. This probabilistic formulation is shown
to be reducible to a purely deterministic theory.

1

This note treats the probabilistic theory of a system whose logic is a
Boolean o-algebra and shows its reduction to a completely deterministic
one. The set of states % consists of all the probability measures on the
logic, and the set of observables @ consists of all the c-homomorphisms on
the real Borel o-field into the logic. This is a special case of generalised
quantum theory as defined by Kronfli (1970) which includes both quantum
logics and o-algebras as special cases. On the other hand, conventional
quantum theory yields classical mechanics only as an approximation.
The results obtained are not very surprising, although they are more detailed
technically. The main point, however, is the conclusion that a theory is
deterministic if and only if its logic is a Boolean o-algebra. 1t is hoped that
this will lend support to the probabilistic point of view, adopted*in the
lattice-theoretic formulation of the generalised theory, as a fruitful approach
to the mathematical analysis of fundamental physics.

From this axiomatic formulation follows the existence of phase space
as a separable metric space which is topologically and set theoretically
equivalent to the set of all the pure states & of . In any state in & each
observable is sharply defined with zero variance such that the states #\&
become inaccessible physically.
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It
The definition and existence of phase space follow from

Theorem 1

For a system with finite degrees of freedom whose logic £, is a Boolean
o-algebra, there exist a separable metric space 2 and a o-homomorphism ¢
on the Borel o-field #(82) of 2 onto Z ..

Proof: The finiteness of the degrees of freedom implies the existence of a
finite set of observables which is complete. Let &, be the Boolean sub-o-
algebra of ., generated by the ranges of these observables. Then %, is
countably generated, since the range of each observable is countably
generated. Completeness means that %, is maximal, and hence equals
Z.. Thus &, is countably generated.

By Loomis theorem (Loomis, 1947) there exists a set X, a o-algebra &7,
of subsets of X and a o-homomorphism #, of .7, onto .Z.. Let (a,) = &,
generate % . Since &; is onto, there exists a countable set (4,) < &7, such
that a, = h,(4,) (n € N). Let &7, be the sub-c-algebra of .7, generated by
(4,). Then hy(+/,) is a sub-o-algebra of £, containing its generators (a,),
and hence equals .. Since 27, is countably generated, there exists a
separable metric space 2 and a g-isomorphism %, on Z(£2) onto ./, (see
Parthasarathy, 1967, p. 133, theorem 2.2). The proof is completed by
puttingp=~h, o h,. M

From now on .Z, denotes a countably generated Boolean o-algebra, for
instance when it is a Boolean o-algebra and the system has finite degrees
of freedom. The set of all states will be denoted by . and the pure ones
by . The space £ is as in Theorem 1. Let Q, = {x € 2:¢({x})  @}. The
separable metric space £2, will be called the phase space associated with .Z ...
[The author is not aware if there exists a ¢, as in Theorem 1, such that
2, B(Q). In this case H(Q,)={4ecHB(2):4A< Q). This would then
make #(2,) and £, o-isomorphic. No such assumption is made here.]

Recall that a Boolean algebra is atomic if every non-atomic element
(# @) dominates at least one atom. It is essential that £, # &. The next
result shows that atomicity of % .. is a sufficient condition. In a forthcoming
paper we shall show that it is also necessary in order to make a Boolean
system deterministic.

Theorem 2
Let & be atomic. Then 2, # @ . Furthermore, the mapping y:x — ¢({x})
is a bijection on 2, onto the set o of the atoms of Z ...

Proof: Let ay e/ and (a,) generate £,. For each n, cither a3 <a, or
gy < a, . If necessary replace a, by a,’ so that g, < g, for all n. Clearly (a,)
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still generates .%,. Since @ is onto let 4, € Z(£2) such that ¢(4,) = a,. Put
B= Q A,. Then ¢(B) = /n\ a,>a, # &, implying B# @. Note that (4,)
generates #(2). Now #={Ec %(2):B<E or BNE=g} is a sub-o-
algebra of #({2) containing its generators and hence equals %(£2). But
since the latter contains all singletons, # = Z(£2) is possible only if B = {x}
for some x € . But p({x}) # 2, thus x€ 2, and Q, # &.

Now let x, y € Q,, x #y and y(x) = y() = a say. Then {x} < {y}’ imply-
inga<d',ie.a= g, whichis a contradiction. Hence x = y and v is one-one
on Q..

Let xe £, ay=y(x), ac ¥, and a < a,. Then there exists 4 € Z(2)
such that ¢(4) = a. Now either x € 4 or x € A'. Thus either g, < @ implying
a=a,; or ay < a implying a<da’ i.e. a=@. Hence g, is an atom. Thus
y is an injection on £2, into &7.

Let a, € o7. As before we can choose a generating sequence (a,) in &£,
such that a, <a, for all n. Let 4, 4,c %(2) such that ¢(4)=a, and
¢(4,) =a, Let B,= A U A4,. Then ¢(B,) = a, and, therefore, (B,) generates
Z(£2). Put B= Q B,. Then ¢(B) # @ and as in the first paragraph of the

proof B = {x} for some x € £2,.. Clearly x € 4 and hence 4 N 2, +# @ . Thus
@ # y(x) <a, implying y(x)=a,. Take ye AN, and x#y. Then
@ # y(¥) < ap implying y(x) = y(¥) = a,. But y is one-one making x =y,
a contradiction. Thus A is a singleton and y is onto. =

From now on £, will denote a countably generated atomic Boolean
c-algebra.
Let .o be the set of all atoms of Z,. For each a € .#, define g, by

1 a<b
a®-ly Gsy ey

Clearly, g, € &, since £, is atomic. Let .#(£2) be the set of all probability
measures on (£2,%(£2)). For each x € 2 define §, to be the atomic measure
€ M (£2) concentrated at x. Put P(Q,) = {6,:x € £2,}. The next result shows
the simple structure of the set of pure states &.

Theorem 3

The set of pure states on 2, is precisely P ={q,:a & of}. Furthermore,
@ induces a bijection ¢ of P onto P(£2,).

Proof: The proof of the first part is very much the same as that by Vara-
darajan (1968, Theorem 6.6). For the second part define ¢:p—>poep
(p € &). Clearly, ¢ is a convex homomorphism on % into .#(£2) mapping
the extreme points & of & into the extreme points Z(£2) of 4 (2). To
prove that ¢ is a bijection of # onto #(Q,), let x € Q,, 5, € P(L2,) as defined
above, and a, = y(x).

Define p, = g,_. Clearly
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Thus 8, =p, o ¢ = @(p,), implying that ¢ maps & onto #(£2,). Finally,
let g,, g, € 2 such that §(g,) = ¢(g;) = 8, say. This implies that y~}(a) =
y~!(b) = x. But y is a bijection of 2. onto &7, and hence a = b or, equiva-
lently, g, = g, proving that ¢ is one-to-one on &. m

So far no use was made of the topological properties of £2. All the results
obtained would work for £ as an abstract set and #({2) a countably
generated o-field of subsets of £2 containing all singletons.

Let A (£2) be equipped with its weak topology. We define the weak
topology on & to be the weakest such that ¢ is continuous on &. Since £
is a separable metric space, then .# (£2) is metrisable as a separable metric
space and the spaces £2, and Z(£2,) are homeomorphic (see Parthasarathy,
1967, pp. 42-43). We have now both topological and set theoretical
equivalence of all three spaces £, Z(£2.) and 2. This topological equiva-
lence is important when considering continuous groups of convex auto-
morphisms of &% and their induced representations for motions in 2.,
in particular the (one-parameter) dynamical group.

1

In this section is shown that the points of £, are the only physically
accessible states of the system such that at each point every observable is
sharply defined with zero variance. This depends on an important theorem
of Varadarajan. Let B(£2, R) be the set of equivalence classes [ f] of all
real-valued Borel functions f on 2, where fi, f> € [f] if and only if
{x e R: fi(x) £/2(x)} € Ker(p). Let @ be the set of observables on Z..

Theorem 4
There exists a mapping f:u — [ f,] of O into B(£2, R) such that
0 WE)=o(fL'(E) (EcZ(R),
@) £(x)=0  forall xe .

Proof: See Varadarajan, 1968, Theorem 1.4. m

Corollary

Let xe 2, ue O and [ f,] be the corresponding element in B(82,R) as in
Theorem 4. Then the expectation value of u in the state x is f,(x), and its
variance is zero.

Proof: Let p.=¢1(8,) and p,:E—p, o o(f7(E)) (EecPB(R)). Then,
clearly, u1, is the atomic measure on R concentrated at f,(x). The expectation
value of u in the state p, is

+oo0 +o0

| wst@) = | mdn) =z

- o]
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The variance is
+eo
| 2pu@) —fixy =0m

Now any convex automorphism on & is a one-to-one mapping of &
onto itself. This is the same for the dynamical group {U,:f € R}. Starting
the system in a well defined state p, € P(x € 2,), its state will always remain
in &Z for all time ¢.
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