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Abstract 

Starting axiomatically with a system of finite degrees of freedom whose logic .LPc is an 
atomic Boolean a-algebra, we prove the existence of phase space s as a separable 
metric space, and a natural (weak) topology on the set of states 5 ~ (all the probability 
measures on s such that De, the subspace of pure states ~, the set of atoms of A% 
and the space ~'(12c) of all the atomic measures on 12c, are all homeomorphic. The only 
physically accessible states are the points of 12c. This probabilistic formulation is shown 
to be reducible to a purely deterministic theory. 

This note treats the probabilistic theory o f  a system whose logic is a 
Boolean a-algebra and shows its reduction to a completely deterministic 
one. The set o f  states 50 consists o f  all the probabili ty measures on the 
logic, and the set o f  observables (9 consists o f  all the a -homomorphisms  on 
the real Borel o--field into the logic. This is a special case o f  generalised 
quan tum theory as defined by Kronfli (1970) which includes both  quan tum 
logics and a-algebras as special cases. On the other hand, conventional  
quan tum theory yields classical mechanics only as an approximation.  
The results obtained are not  very surprising, a l though they are more detailed 
technically. The main point, however, is the conclusion that  a theory is 
deterministic i f  and only i f  its logic is a Boolean ~-algebra. It  is hoped  that  
this will lend support  to the probabilistic point  o f  view, adop ted~n  the 
lattice-theoretic formulat ion of  the generalised theory, as a fruitful approach  
to the mathematical  analysis o f  fundamental  physics. 

F r o m  this axiomatic formulat ion follows the existence o f  phase space 
as a separable metric space which is topologically and set theoretically 
equivalent to the set o f  all the pure states ~ o f  5 ~ In  any state in ~ each 
observable is sharply defined with zero variance such that the states 5 0 \ ~  
become inaccessible physically. 
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II 

The definition and existence of phase space follow from 

Theorem 1 

For a system with finite degrees of freedom whose logic ~q~ is a Boolean 
a-algebra, there exist a separable metric space s and a a-homomorphism qJ 
on the Borel a-fieMM(g2) of g2 onto ~q~. 

Proof: The finiteness of the degrees of freedom implies the existence of a 
finite set of observables which is complete. Let ~a a be the Boolean sub-a- 
algebra of ~cf~ generated by the ranges of these observables. Then ~ a  is 
countably generated, since the range of each observable is countably 
generated. Completeness means that ~,q~ 1 is maximal, and hence equals 
c~o. Thus ~ is countably generated. 

By Loomis theorem (Loomis, 1947) there exists a set X, a a-algebra d a  
of subsets of X and a a-homomorphism ha of ~r onto 5r Let (an) ~ ~o-q~ 
generate 5e~. Since ha is onto, there exists a countable set (An) c d ~  such 
that an = ha(A,) (n ~ N). Let d 2  be the sub-a-algebra of ~r generated by 
(An). Then h1(~r is a sub-a-algebra of ~L~a~ containing its generators (an), 
and hence equals ~q~c. Since ~r is countably generated, there exists a 
separable metric space g2 and a a-isomorphism ha on M(~2) onto ~r (see 
Parthasarathy, 1967, p. 133, theorem 2.2). The proof is completed by 
putting T = ha o h 2. �9 

From now on ~q~c denotes a countably generated Boolean a-algebra, for 
instance when it is a Boolean a-algebra and the system has finite degrees 
of freedom. The set of all states will be denoted by 5 p and the pure ones 
by ~ .  The space ,Q is as in Theorem 1. Let g2 c = {x ~ g2:~v({x}) r ~}. The 
separable metric space g2c will be called the phase space associated with 5r 
[The author is not aware if there exists a % as in Theorem 1, such that 
O~ e ~)(g2). In this case ~(~2~)= {A e ~(s c Oc}. This would then 
make ~'(~2~) and &a a-isomorphic. No such assumption is made here.] 

Recall that a Boolean algebra is atomic if every non-atomic element 
( r  ~ )  dominates at least one atom. It is essential that $2~ ~ ~.  The next 
result shows that atomicity of~~ is a sufficient condition. In a forthcoming 
paper we shall show that it is also necessary in order to make a Boolean 
system deterministic. 

Theorem 2 

Let ~q~ be atomic. Then s ~ ~.  Furthermore, the mapping 7: x -+ q~({x}) 
is a bijection on ~ onto the set d of the atoms of Sly. 

Proof: Let a0 e d and (an) generate ~c,r c. For each n, either ao < an or 
a0 < an'. If  necessary replace an by an' so that ao < an for all n. Clearly (an) 
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still generates c~ c. Since 9 is onto  let An e ~(~2) such that  9(An) = an. Put  
B = Q A n. Then  9(B)  = A an > ao # ~ ,  implying B # ~ .  No te  that  (An) 

generates ~(~2). N o w  ~ = ( E e  M ( ~ ) : B  c E or B n E =  ~} is a sub-a-  
algebra of  ~(~2) containing its generators  and hence equals M(~2). But 
since the latter contains all singletons, ~ = M(s is possible only if B = (x} 
for  some x e ~ .  But ~({x}) # ~ ,  thus x e ~c  and ~2 c # ~ .  

N o w  let x, y e ~2~, x ~ y and y(x) = 7(Y) = a say. Then {x) c {y}' imply- 
ing a < a', i.e. a = ~ ,  which is a contradiction. Hence  x = y and ), is one-one 
o n  ~c .  

Let  x e ~ ,  ao = ~(x), a ~ ~ a  and a < ao. Then there exists A ~ ~(~2) 
such that  9(A) = a. N o w  either x ~ A or x ~ A'. Thus either ao < a implying 
a - - a o ;  or  a0 < a' implying a < a '  i.e. a = ~ .  Hence ao is an a tom.  Thus  

is an injection on 12c into d .  
Let  ao E ~r As before we can choose a generating sequence (an) in ~ c  

such tha t  ao < an for  all n. Let  A, An ~ M(O) such tha t  9 ( A ) =  ao and 
qo(An) = an. Let  Bn = A U An. Then ~(Bn) = a~ and, therefore, (Bn) generates 
~ ( Q ) .  Put  B = O B~. Then c?(B) # ~ and as in the first pa ragraph  of  the 

/ l  

p r o o f  B = (x} for  some x ~ ~2~. Clearly x ~ A and hence A n ~ # ~ .  Thus 
# V(x) < ao implying V(x) = ao. Take  y ~ A n ~2~ and x # y. Then 
# ),(y) < ao implying V(x) = 7(Y) = ao. But V is one-one making  x = y, 

a contradiction.  Thus A is a singleton and V is onto. �9 

F r o m  now on ~,~a will denote a countably  generated a tomic Boolean 
a-algebra.  

Let  ~r be the set of  all a toms of  .Z',. For  each a s ~r define q, by 

q~(b) = {10 a < b a < b' (b ~ ~ c )  

Clearly, qn ~ 6~, since ~ ' ,  is atomic.  Let  dt'(s be the set of  all probabi l i ty  
measures  on (~2,M(~2)). For  each x ~ ~2 define ~x to be the a tomic  measure  

~g(12) concentrated at x. Put  ~ ( ~ )  = {8~: x s ~2,). The  next result shows 
the simple structure of  the set o f  pure states ~ .  

Theorem 3 

The set of  pure states on s is precisely ~ = {q~:a ~ ~ ) .  Furthermore, 
~o induces a bijection ~ of ~ onto ~ ( ~ ) .  

Proof: The  p r o o f  of  the first pa r t  is very much  the same as tha t  by Vara-  
dara jan  (1968, Theo rem 6.6). For  the second par t  define ~ : p - + p  o ~o 
(p ~ ~9~). Clearly, r is a convex h o m o m o r p h i s m  on S ~ into ~ ' (~2)  mapping  
the extreme points  ~ of  6 a into the extreme points  ~(~2) of  ~g(~2). To  
prove  that  ~ is a bijection o f ~  onto ~(~2c), let x ~ ~2~, ~ s ~ ( ~ , )  as defined 
above,  and ax = V(x). 

Define p~ --- q~. Clearly 

px(~(A))={lo x ~ A  x ~ A '  (A ~ ~ ( ~ ) )  
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Thus ~ =Px o 99 = r implying that 93 maps ~ onto ~(s Finally, 
let qo, q~ e ~ such that 93(q,)= 93(qb)= 3~, say. This implies that ~,-~(a)= 
~,-~(b) = x. But 7 is a bijection ofs onto d ,  and hence a = b or, equiva- 
lently, q, = qb, proving that 93 is one-to-one on ~ .  �9 

So far no use was made of the topological properties ofs All the results 
obtained would work for ~ as an abstract set and ~(s a countably 
generated a-field of subsets of ~ containing all singletons. 

Let tit'(g2) be equipped with its weak topology. We define the weak 
topology on 5 a to be the weakest such that 93 is continuous on 5 ~ Since s 
is a separable metric space, then ~/(X2) is metrisable as a separable metric 
space and the spaces X2~ and ~(X2c) are homeomorphic (see Parthasarathy, 
1967, pp. 42-43). We have now both topological and set theoretical 
equivalence of all three spaces g2~, ~(s and 6~. This topological equiva- 
lence is important when considering continuous groups of convex auto- 
morphisms of 5 a and their induced representations for motions in X2c, 
in particular the (one-parameter) dynamical group. 

III 

In this section is shown that the points of ~2c are the only physically 
accessible states of the system such that at each point every observable is 
sharply defined with zero variance. This depends on an important theorem 
of Varadaraja n. Let B(~2,R) be the set of equivalence classes [ f ]  of all 
real-valued Borel functions f on -(2, where f l ,  f2 ~ [ f ]  if and only if 
{x e s ~ Ker(99). Let 0 be the set of observables on .L,e~. 

Theorem 4 

There exists a mapping f :  u -+ [fu] of(9 into B(~Q,R) such that 

(i) u(E) = 99(f ~ (E) )  (E ~ ~(R)) ,  

(ii) f~(x) = 0 for all x E Oc'. 

Proof: See Varadarajan, 1968, Theorem 1.4. �9 

Corollary 

Let x ~ ~c, u ~ (~ and [f,] be the corresponding element in B(g2,R) as in 
Theorem 4. Then the expectation value of u in the state x is f ,(x),  and its 
variance is zero. 

Proof: Let p x = r  and i~:E---~ px o 99(f ~l(E)) (E s G2(R)). Then, 
clearly,/z~ is the atomic measure on R concentrated atf~(x). The expectation 
value of u in the state p ,  is 

+co +ao 

f tpx(u(dt))= f ttz~(dt)=f~(x) 
w o o  oo 
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The var iance is 

q-co 

f 
--co 

tZpx(u(dt)) - f ~ ( x )  2 = 0 �9 

N o w  any convex au tomorph i sm  on 5 ~ is a one- to-one  mapp ing  of  :~  
on to  itself. This is the same for the dynamica l  group { U,: t ~ R}. Star t ing 
the  system in a well defined s ta tep~ ~ ~ ( x  E g2c), its state will always remain  
in ~ for  all t ime t. 
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